References
De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).
Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).
PubMed CAS Google Scholar
Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).
CAS Google Scholar
Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).
Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).
CAS Google Scholar
Wang, P. et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 3754 (2022).
Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012).
PubMed CAS Google Scholar
Pohlmann, A. et al. Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257–1262 (2006).
Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).
CAS Google Scholar
Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).
CAS Google Scholar
Crandall, B. S., Overa, S., Shin, H. & Jiao, F. Turning carbon dioxide into sustainable food and chemicals: how electrosynthesized acetate is paving the way for fermentation innovation. Acc. Chem. Res. 56, 1505–1516 (2023).
PubMed CAS Google Scholar
Jiang, K., Wang, H., Cai, W. B. & Wang, H. Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11, 6451–6458 (2017).
See AlsoScore a Postal Job at the Mega SFL Job Fair At the Home of the Florida Panthers on Aug 29 - Florida newsroomSeeker - Vacancy - Detail OverviewThe Ohio State University hiring Hamilton County Extension Educators Coordinator 3 SNAP-Ed in Columbus, OH | LinkedInOffice Unit for Sale in Philippine Stock Exchange Tower, BGC, Taguig CityPubMed CAS Google Scholar
Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).
CAS Google Scholar
Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).
Zhang, P. et al. Chem–bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem 8, 3363–3381 (2022).
CAS Google Scholar
Roh, H. et al. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresour. Technol. 327, 124789 (2021).
PubMed CAS Google Scholar
Stöckl, M., Harms, S., Dinges, I., Dimitrova, S. & Holtmann, D. From CO2 to bioplastic—coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis. ChemSusChem 13, 4086–4093 (2020).
Rowaihi et al. Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: investigation under stress-inducing conditions. PLoS One 13, e0196079 (2018).
Dinges, I. et al. Coupling of CO2 electrolysis with parallel and semi-automated biopolymer synthesis—ex-cell and without downstream processing. ChemSusChem 17, e202301721 (2024).
PubMed CAS Google Scholar
Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).
Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2, 437–447 (2019).
CAS Google Scholar
Yang, Y. H. et al. Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl. Microbiol. Biotechnol. 87, 2037–2045 (2010).
PubMed CAS Google Scholar
York, G. M. et al. Ralstonia eutropha H16 encodes two and possibly three intracellular poly[d-(−)-3-hydroxybutyrate] depolymerase genes. J. Bacteriol. 185, 3788–3794 (2003).
Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).
PubMed CAS Google Scholar
Xia, Y. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 3864 (2021).
Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).
PubMed CAS Google Scholar
Zhang, B. A., Costentin, C. & Nocera, D. G. On the conversion efficiency of CO2 electroreduction on gold. Joule 3, 1565–1568 (2019).
Zheng, Y. et al. Seeded growth of gold–copper Janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products. Small 18, 1–8 (2022).
Behrens, P. Bonding in silver-oxygen compounds from Ag L3 XANES spectroscopy. Solid State Commun. 81, 235–239 (1992).
CAS Google Scholar
Miyamoto, T., Niimi, H., Kitajima, Y., Naito, T. & Asakura, K. Ag L3-edge X-ray absorption near-edge structure of 4d10 (Ag+) compounds: origin of the edge peak and its chemical relevance. J. Phys. Chem. A 114, 4093–4098 (2010).
PubMed CAS Google Scholar
Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978–3990 (2022).
CAS Google Scholar
Peng, H. J., Tang, M. T., Halldin Stenlid, J., Liu, X. & Abild-Pedersen, F. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products. Nat. Commun. 13, 1399 (2022).
Weaver, M. J. Potentials of zero charge for platinum(111)–aqueous interfaces: a combined assessment from in-situ and ultrahigh-vacuum measurements. Langmuir 14, 3932–3936 (1998).
CAS Google Scholar
Wang, J. & Yu, J. Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J. Ind. Microbiol. Biotechnol. 26, 121–126 (2001).
PubMed CAS Google Scholar
Feng, D. & Hicks, A. Environmental, human health, and CO2 payback estimation and comparison of enhanced weathering for carbon capture using wollastonite. J. Clean. Prod. 414, 137625 (2023).
CAS Google Scholar
Ghamkhar, R., Hartleb, C., Rabas, Z. & Hicks, A. Evaluation of environmental and economic implications of a cold-weather aquaponic food production system using life cycle assessment and economic analysis. J. Ind. Ecol. 26, 862–874 (2022).
Huang, S. et al. Co-doped Mn3O4 nanocubes via galvanic replacement reactions for photocatalytic reduction of CO2 with high turnover number. ChemSusChem 15, e202200704 (2022).
PubMed CAS Google Scholar
Ahn, H., Cho, S., Park, J. T. & Jang, H. Sequential galvanic replacement mediated Pd-doped hollow Ru–Te nanorods for enhanced hydrogen evolution reaction mass activity in alkaline media. Nanoscale 14, 14913–14920 (2022).
PubMed CAS Google Scholar
Cheng, H., Wang, C., Qin, D. & Xia, Y. Galvanic replacement synthesis of metal nanostructures: bridging the gap between chemical and electrochemical approaches. Acc. Chem. Res. 56, 900–909 (2023).
Rong, W. et al. Few-atom copper catalyst for the electrochemical reduction of CO to acetate: synergetic catalysis between neighboring cu atoms. CCS Chem. 5, 1176–1188 (2023).
CAS Google Scholar
Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).
CAS Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
CAS Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
CAS Google Scholar
Ernzerhof, M. & Perdew, J. P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 109, 3313–3320 (1998).
CAS Google Scholar
Al, E. & El, L. U. A climbing image nudged elastic band method for finding saddle points and minimum. Energy 12, 9–10 (1997).
Park, J. O. et al. Synergistic substrate cofeeding stimulates reductive metabolism. Nat Metab 1, 643–651 (2019).
PubMed CAS Google Scholar
Organic Carbon, Total (Hach, 2017); https://cdn.bfldr.com/7FYZVWYB/at/q9qp8j3zbh6pxfxb6wbr7n8f/DOC3165301335.pdf
Gutteridge, J. M. C. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex. Free Radic Biol Med 11, 401–406 (1991).
PubMed CAS Google Scholar
Han, Y., Zhu, J., Sun, P. & Wang, N. Synthesis of 5 mol% Ga3+-doped SnP2O7/KPO3 composite electrolyte for intermediate temperature fuel cells. Int. J. Electrochem. Sci. 15, 5255–5261 (2020).
CAS Google Scholar
Minh, D. P., Nzihou, A. & Sharrock, P. Sodium dihydrogen phosphate starting from sodium chloride and orthophosphoric acid via cation resin exchange. Phosphorus Sulfur Silicon Relat. Elem. 190, 1743–1748 (2015).
CAS Google Scholar